在BIN之间传输多个对象是许多应用程序的常用任务。在机器人学中,标准方法是拿起一个对象并一次转移它。然而,抓住和拾取多个物体并立即将它们转移在一起更有效。本文介绍了一组新颖的策略,用于有效地抓住一个垃圾箱中的多个物体以将它们转移到另一个物体。该策略使机器人手能够识别最佳现成的手配置(预先掌握),并根据要掌握所需的物体计算屈曲协同作用。本文还提出了一种方法,它使用Markov决策过程(MDP)在所需的数量大于单个掌握的能力时模拟拾取传输例程。使用MDP模型,所提出的方法可以产生最佳的拾取传输程序,以最小化传输的数量,表示效率。所提出的方法已经在模拟环境和真正的机器人系统中进行了评估。结果表明,与最佳单一物体拣选 - 转移溶液相比,该方法将转移数59%和电梯数量减少58%。
translated by 谷歌翻译
人类手可以通过仅基于触觉感测的堆掌握一下目标数量的物体。为此,机器人需要在堆中掌握,从提升之前感测掌握中的物体的数量,并预测升降后将保持掌握的物体数量。这是一个具有挑战性的问题,因为在进行预测时,机器人手仍然在桩中,并且抓握中的物体对视觉系统不观察到。此外,在从堆中抬起之前手掌抓住的一些物体可能会在手中抬起时掉落。出现这种情况,因为它们被堆中的其他物体支持而不是手指。因此,机器人手应该在提升之前使用其触觉传感器来感测掌握的物体的数量。本文介绍了用于解决此问题的新型多目标抓取分析方法。它们包括掌握体积计算,触觉力分析和数据驱动的深度学习方法。该方法已经在Barrett手上实施,然后在模拟中评估和具有机器人系统的真实设置。评估结果得出结论,一旦BarretT手掌掌握了多个物体,数据驱动的模型可以在提升之前预测,在提升之后将保留在手中的物体的数量。用于我们方法的根均方误差为30.74,用于模拟的立方体和0.58个,球的距离,1.06个球体,对于真实系统的立方体,1.45。
translated by 谷歌翻译
Concept bottleneck models (CBMs) (Koh et al. 2020) are interpretable neural networks that first predict labels for human-interpretable concepts relevant to the prediction task, and then predict the final label based on the concept label predictions.We extend CBMs to interactive prediction settings where the model can query a human collaborator for the label to some concepts. We develop an interaction policy that, at prediction time, chooses which concepts to request a label for so as to maximally improve the final prediction. We demonstrate thata simple policy combining concept prediction uncertainty and influence of the concept on the final prediction achieves strong performance and outperforms a static approach proposed in Koh et al. (2020) as well as active feature acquisition methods proposed in the literature. We show that the interactiveCBM can achieve accuracy gains of 5-10% with only 5 interactions over competitive baselines on the Caltech-UCSDBirds, CheXpert and OAI datasets.
translated by 谷歌翻译
Selective classification involves identifying the subset of test samples that a model can classify with high accuracy, and is important for applications such as automated medical diagnosis. We argue that this capability of identifying uncertain samples is valuable for training classifiers as well, with the aim of building more accurate classifiers. We unify these dual roles by training a single auxiliary meta-network to output an importance weight as a function of the instance. This measure is used at train time to reweight training data, and at test-time to rank test instances for selective classification. A second, key component of our proposal is the meta-objective of minimizing dropout variance (the variance of classifier output when subjected to random weight dropout) for training the metanetwork. We train the classifier together with its metanetwork using a nested objective of minimizing classifier loss on training data and meta-loss on a separate meta-training dataset. We outperform current state-of-the-art on selective classification by substantial margins--for instance, upto 1.9% AUC and 2% accuracy on a real-world diabetic retinopathy dataset. Finally, our meta-learning framework extends naturally to unsupervised domain adaptation, given our unsupervised variance minimization meta-objective. We show cumulative absolute gains of 3.4% / 3.3% accuracy and AUC over the other baselines in domain shift settings on the Retinopathy dataset using unsupervised domain adaptation.
translated by 谷歌翻译
Many real-world learning scenarios face the challenge of slow concept drift, where data distributions change gradually over time. In this setting, we pose the problem of learning temporally sensitive importance weights for training data, in order to optimize predictive accuracy. We propose a class of temporal reweighting functions that can capture multiple timescales of change in the data, as well as instance-specific characteristics. We formulate a bi-level optimization criterion, and an associated meta-learning algorithm, by which these weights can be learned. In particular, our formulation trains an auxiliary network to output weights as a function of training instances, thereby compactly representing the instance weights. We validate our temporal reweighting scheme on a large real-world dataset of 39M images spread over a 9 year period. Our extensive experiments demonstrate the necessity of instance-based temporal reweighting in the dataset, and achieve significant improvements to classical batch-learning approaches. Further, our proposal easily generalizes to a streaming setting and shows significant gains compared to recent continual learning methods.
translated by 谷歌翻译
Twenty20板球,有时是二十20,经常缩写为T20,是板球的一小部分。在一场二十二十比赛中,两支球员组成的两支球队都有一局,最多仅限20分。这个版本的板球尤其是不可预测的,这是它最近在近期越来越受欢迎的原因之一。但是,在本文中,我们尝试了四种不同的方法来预测T20板球比赛的结果。具体来说,我们要考虑:以前的竞争团队参与者的绩效统计数据,从知名的板球统计网站获得的球员的评分,以相似的性能统计数据和基于ELO基于ELO的方法来汇率玩家。我们通过使用逻辑回归,支持向量机,贝叶斯网络,决策树,随机森林来比较每种方法的性能。
translated by 谷歌翻译
可靠的异常检测对于深度学习模型的现实应用至关重要。深层生成模型产生的可能性虽然进行了广泛的研究,但仍被认为是对异常检测的不切实际的。一方面,深层生成模型的可能性很容易被低级输入统计数据偏差。其次,许多用于纠正这些偏见的解决方案在计算上是昂贵的,或者对复杂的天然数据集的推广不佳。在这里,我们使用最先进的深度自回归模型探索离群值检测:PixelCNN ++。我们表明,PixelCNN ++的偏见主要来自基于局部依赖性的预测。我们提出了两个我们称为“震动”和“搅拌”的徒转化家族,它们可以改善低水平的偏见并隔离长期依赖性对PixelCNN ++可能性的贡献。这些转换在计算上是便宜的,并且在评估时很容易应用。我们使用五个灰度和六个自然图像数据集对我们的方法进行了广泛的评估,并表明它们达到或超过了最新的离群检测性能。总而言之,轻巧的补救措施足以在具有深层生成模型的图像上实现强大的离群检测。
translated by 谷歌翻译
构建可靠的AI决策支持系统需要一组强大的数据来培训模型;在数量和多样性方面。在资源有限的设置或在部署的早期阶段中,获取此类数据集可能很困难。样本拒绝是应对这一挑战的一种方法,但是该领域的许多现有工作都不适合这种情况。本文证明了该立场并提出了一个简单的解决方案作为概念基线的证明。
translated by 谷歌翻译
对计算的需求仍在呈指数增长。这种增长将转化为计算能源消耗的指数增长,除非其能源效率的提高可以超过其需求增加。然而,经过数十年的研究,由于已经进行了高度优化,因此进一步提高能源效率变得越来越具有挑战性。结果,在某个时候,计算需求的增加可能会超过其能源效率的增加,这可能会大大增加。这种指数增长(如果不受组织)将把计算定位为全球碳排放的重要贡献者。尽管著名的技术公司已经意识到了这一问题并试图减少其碳排放,但可以理解的是,他们的成功是可以无意间传达出现在或很快就会解决问题的错误印象的潜力。如果这种错误的印象有助于阻止在这一领域进行进一步研究,因为我们讨论了消除计算机,而且更普遍地社会的碳排放远非解决问题。为了更好地理解问题的范围,本文提炼了决定计算的碳足迹及其对实现可持续计算的影响的基本趋势。
translated by 谷歌翻译
我们介绍了一个大规模实验,该实验对编码器进行了预处理,其参数计数范围从700m到9.3b不等,随后蒸馏到较小的型号中,范围为17m-170亿参数,其应用到自然语言理解(NLU)组件(NLU)组件(虚拟助手系统。尽管我们使用70%的口语数据训练,但在对书面形式的跨语性自然语言推论(XNLI)语料库进行评估时,我们的教师模型与XLM-R和MT5相当。我们使用系统中的内域数据对教师模型进行了第二阶段的训练,以提高了3.86%的相对分类,而相对7.01%的插槽填充。我们发现,即使是从我们的2阶段教师模型中提取的170亿参数模型,与仅接受公共数据的2.3B参数老师相比,与2.3B参数老师相比,意图分类更好2.88%,并且7.69%的插槽填充错误率更好(第1阶段),强调了。内域数据对训练的重要性。当使用标记的NLU数据进行离线评估时,我们的17m参数阶段2蒸馏模型的表现分别优于XLM-R碱基(85m Params)和Distillbert(42m Params),分别优于4.23%至6.14%。最后,我们介绍了一个完整的虚拟助手实验平台的结果,在该平台中,我们发现使用经过预训练和蒸馏管道训练的模型超过了从8500万参数教师蒸馏的模型,在自动测量全系统用户不满的自动测量中,从8500万参数教师蒸馏出3.74%-4.91%。
translated by 谷歌翻译